
Sharing Without a Network Through Video

Anthony Wang
xy@mit.edu

Kevin Zhao
kez@mit.edu

Figure 1. General overview: The sender encodes a file into a sequence of grids and displays these grids at 30 FPS on their screen. The
receiver reads the displayed grid using their camera and in real time, recovers the original file by locating the grid corners and performing
a perspective transform and color calibration.

Abstract

Wireless data transfer is crucial for many applications,
but existing methods typically rely on a network. We present
an alternative visual method for data transfer, SWANTV, in-
spired by QR codes, which displays a sequence of large col-
ored grids on a screen and decodes it using a camera. The
primary computer vision challenge is to consistently locate
the grid in an image, and we develop both a CNN approach
and an algorithmic approach to this task. To achieve high
bandwidth, we address several hardware obstacles through
methods like color calibration. Our evaluation shows that
SWANTV can achieve a bandwidth of over 2 megabits per
second, which is 80 times faster than prior work in visual
data transfer and comparable to low-quality Wi-Fi speeds.

1. Introduction
Wireless data transmission is essential to many applications,
but data transfer methods such as Wi-Fi typically rely on
a network. These transfer methods fail when networks are
inaccessible, which may occur due to factors such as remote

location, server outages, and incompatible hardware. This
shortcoming motivates a method of sharing data without a
network.

Barcodes and QR codes are two visual methods for wire-
less data transmission that only require a screen and camera.
However, barcodes can only encode short strings and QR
codes have a maximum capacity of 2953 bytes [1], so nei-
ther method can transfer files larger than one page of text.

However, QR codes are still a good foundation for visual
data transfer, and can be improved in three main ways:
1. Split large files into many frames, and display the frames

in an animation.
2. Use a significantly larger grid size to encode more data

in each frame.
3. Use multiple colors instead of simply black and white to

further increase the capacity of each frame.
In this work, we propose Sharing Without a Network

Through Video (SWANTV), a software pipeline for high-
bandwidth data transfer through these enhanced QR codes.
The primary computer vision challenge is to determine the
location of the grid within an image with high precision, so
we develop both a CNN approach and an algorithmic ap-

proach to this task. To achieve high bandwidth, we address
several hardware obstacles through methods like color cali-
bration. Our evaluation shows that SWANTV can achieve a
bandwidth of over 2 megabits per second, which is 80 times
faster than prior work in visual data transfer and comparable
to low-quality Wi-Fi speeds.

2. Related Work
2.1. QR Code Extensions

Color QR codes have been extensively studied, such as in
HCC2D [8] and HiQ [14]. However, individual QR codes
still have a fixed capacity. To bypass this capacity limit,
several projects such as TXQR [6] and QRTransfer [13] ex-
plored animated QR codes. However, to the best of our
knowledge, existing animated QR codes can only reach a
bandwidth of 25 kilobits per second (kbps), due to using on
standard QR codes which have low information capacity.

2.2. Error Correcting Codes (ECC)

Despite their shortcomings, these existing methods employ
useful techniques to detect and correct decoding errors. QR
codes use Reed-Solomon error-correcting codes [11] to re-
construct the data even if parts of the image are corrupted.
TXQR uses fountain codes [5] to divide the file into redun-
dant frames so the file can be reconstructed after any suffi-
ciently large subset of the frames is decoded.

2.3. Keypoint Detection

Harris [9] and FAST [12] are classical corner detectors.
However, these hand-crafted features are may be less ro-
bust than simple CNNs. MOSSE [4] learn filters by ap-
plying Gaussian smoothing to the targets and minimizing
the MSE loss, but a shallow CNN may capture more fea-
tures than any single layer of filters. Existing CNN meth-
ods for keypoint detection [2, 15] are typically complex and
do not meet our fast CPU inference demands. [7] do train
a hardware-efficient CNN, but they require existing hand-
crafted features for training.

3. Methods
The general task and approach is shown in Fig. 1. In
short, the primary challenge is accurately transferring data
through the inherently imperfect modality of vision. To ad-
dress this challenge, we develop a robust computer vision
pipeline with error correction.

3.1. Encoding

We use Reed-Solomon codes and fountain codes, specifi-
cally Raptor codes, to encode the data into a sequence of
binary frames. Every three bits of the sequence are mapped
to one of the 8 vertices of the RGB color space cube, and

the corresponding color sequence is arranged into cells on a
rectangular grid with dimensions ranging from 50 by 50 to
300 by 300.

To facilitate the decoding process, we mark the corners
of each grid with a predetermined pattern, shown in Fig. 2.
We use a different color in each corner for the color calibra-
tion step of decoding (Sec. 3.4).

Figure 2. Simulated image and label (overlaid in yellow) pair.

3.2. Data

Our training data is artificially generated through a simu-
lated environment. The grids are randomly initialized and
overlaid on a random background sampled from Places365
[16] to approximate the real world backgrounds in the cam-
era frame. The grid is then distorted through image aug-
mentation techniques like perspective transform and color
jittering. Labels of desired keypoint locations like corners
can be maintained across the transformations. Fig. 2 shows
one generated image-label pair.

3.3. Grid Localization

One of the main challenges is accurately localizing the grid,
as the location, orientation, scale, and illumination of the
grid will vary throughout the camera footage. As the grid is
rectangular, we reduce this task to identifying its four cor-
ners, which is sufficient to determine the grid layout. We
develop two methods for corner localization, both of which
are two-stage approaches where the first stage makes coarse
predictions of each corner location that get refined in the
second stage.

Figure 3. Overview of the two-stage CNN approach for extracting the grid from the webcam frame.

3.3.1 CNN Approach

In our two stage CNN approach, one CNN is first applied
to a downsampled version of the webcam frame to obtain
coarse predictions of the corner locations. Cropped patches
around these regions are extracted from the original image,
and the second-stage CNN leverages the high resolution
of these patches to make finer-grained predictions. Fig. 3
shows each step of this approach.

As inference must be performed 30 times per second to
process each frame in real time, we use shallow, quantized
CNNs. Specifically, both our first and second-stage CNNs
are composed of only three convolutional layers, with a
maximum width of 32 filters.

We train the first-stage CNN to predict four keypoints
per corner, for a total of 16 keypoints per grid, shown in
Fig. 2, while the second-stage CNN is trained to predict the
outer corner keypoint for each patch. Gaussian smoothing
is applied to the training targets, similar to [4]. Our CNNs
are trained to predict these smoothed labels by minimiz-
ing a weighted MSE, where nonzero targets are assigned
greater weight to balance the relative abundance of zero tar-
gets which could otherwise drive all predictions towards 0.
We additionally employ quantization aware training [10] to
minimize the drop in performance from quantization.

We use various heuristics to convert the first-stage
CNN’s activations to probable corners. To identify the four
keypoints per corner, we first assume that each corner is

fully within one quadrant. Then, the top 8 locations1 are
extracted from each quadrant as potential keypoints. Be-
cause the true corner keypoints resemble a square, we enu-
merate all

(
8
4

)
combinations of four points but only consider

the combinations that form a convex quadrilateral with rel-
atively equal diagonal lengths, and then select the combina-
tion with the least relative difference in side lengths to be
the four corner keypoints. The outer corner is the corner
keypoint farthest from the center of the image.

3.3.2 Algorithmic Approach

Alternatively, we develop a two-stage algorithmic approach
to locate the corners of the grid, as shown in Fig. 4. The first
stage downsamples the four corners of the camera image so
that the smaller dimension is 8. This blurs the middle of the
grid into shades of brown and gray, so we can locate three of
the corners by simply by finding the pixels with the highest
red, green, and blue values. For finding the white corner,
we find the pixel with the maximum sum of its three color
channels and minus twice the standard deviation of its three
channels. The first stage returns a point inside each corner,
so the second stage performs a flood fill on the image at the
original resolution from those four points to determine all
the pixels for each corner. We can take the average location

1To avoid double-counting keypoints from a single smoothed peak, we
iteratively select the point with the maximum activation and suppress all
neighbors by subtracting a Gaussian centered at the selected point, which
is inspired by the soft NMS [3] used in object detection.

Figure 4. An overview of the algorithmic approach to corner-finding.

of the points in a corner to determine the center, and the
average color of the points to determine the color of the
corner.

3.4. Decoding and Color Calibration

Given the four corners and the grid dimensions, we can re-
construct the original grid using a perspective transform, as-
suming minimal camera distortion. However, the colors in
the camera image do not perfectly match the original en-
coded colors due different lighting conditions and proper-
ties of the camera and monitor.

We mitigate this problem with color calibration, which
leverages the four corner colors cw, cr, cb, cg to determine a
new color space. We define the origin of this color space to
be o, with the three basis vectors r, g, b. Thus, we obtain the
system of equations cw = o + r + g + b, cr = o + r, cg =
o + g, cb = o + b. We can solve this system of equations
and transform any color c from the original image to our
new color space using the equation | | |

r g b
| | |

−1

(c− o).

Finally, we can determine the original color of each cell
by rounding to the nearest color out of the 8 possible origi-
nal colors.

3.5. Practical Considerations

The basic ideas of SWANTV are simple, but physical hard-
ware is complicated and many tricks are required for high
bandwidth. One recurrent obstacle is CPU overheating,
since our pipeline is fairly compute-intensive. Overheating
is particularly problematic for longer videos, so we used a
powerful desktop computer instead of a laptop for those ex-
periments. In addition, our camera is capable of recording
at 4K resolution, but we choose a lower resolution for better
quality and lower CPU usage.

Another problem is the slow refresh time of LCD mon-
itors. We used a 60 Hz LCD monitor for testing, but the
monitor displays a new frame line-by-line over the span of
1
60 seconds instead of near-instantaneously. We displayed
the SWANTV code at 30 FPS, so each frame is only fully
shown on the monitor for 1

60 seconds rather than 1
30 sec-

onds. Originally, we also ran camera at 30 FPS, but some-
times the camera captures an image while the monitor is in
the process of displaying a new frame. The solution is to run
the camera at 60 FPS and skip the next frame if the current
frame was successfully decoded.

4. Results and Discussion
4.1. CNN Approach

Using our simulation method, we generated two datasets
with 40,000 128x128 images each for for stage 1 and stage
2, where the two datasets differ in the scale of the grid – the
entire grid is visible in stage 1 images, while only part of
the corner is visible in stage 2.

CNNs for both stages were initially trained on a Satori
V100 GPU to evaluate the performance of different model
architectures, but the final quantizated models were trained
on a Google Colab GPU due to the lack of any quantization
engine on Satori. In all cases, we train for 10 epochs with a
batch size of 256, learning rate of 0.01, Noam inverse learn-
ing rate scheduler with 30 warmup steps, and the AdamW
optimizer. The overall inference time on 1920x1080 frames
is under 30 ms on a laptop, so the CNN approach should
theoretically be fast enough to decode in real time.

One complicated step of our CNN approach is the heuris-
tics to identify the four keypoints for each corner. Instead
of our method that finds the best combination among top
k = 8 points, a more naive approach is to simply use the
top 4 points as the corner keypoints, which is equivalent to
our method with k = 4. To test the effectiveness of our
method, we can vary the number k of top points to extract
and observe the change in model performance. The results

of this experiment are shown in Fig. 5. The model accuracy
initially improves when increasing k because becomes more
likely that all four true corner keypoints are in the top k pre-
dictions, but increasing k beyond 8 is detrimental to model
performance because the extraneous keypoints increase the
probability of identifying the wrong corner square.

4 5 6 7 8 9 10 11 12
0

0.25

0.5

0.75

1

k: Number of potential keypoints per quadrant.

Pe
rc

en
tF

ra
m

es
D

ec
od

ed

Figure 5. Trade-off between k and model accuracy on a random
test video. Note that roughly 10% of the frames cannot be decoded
due to inconsistent camera colors, even if the corner detection is
correct.

Ultimately, due to simplicity and comparable perfor-
mance offered by the algorithmic approach, our main results
were achieved using the algorithmic corner localization ap-
proach, but similar results could be achieved in theory by
the CNN approach.

4.2. Algorithmic Approach

We performed several experiments to maximize bandwidth
using the algorithmic approach. We used typical con-
sumer hardware for evaluating SWANTV, specifically a
1920x1080 60 FPS Google Pixel 6 camera and a 3840x2400
60 Hz LCD screen. We tested SWANTV in a variety of
lighting conditions to demonstrate its robustness.

80 96 128 160 208 240 272 320
0

500

1,000

1,500

2,000

2,500

Width

B
an

dw
id

th
(k

bp
s)

Figure 6. Bandwidth of SWANTV on different grid sizes.

TXQR Slow
Restaurant

Wi-Fi

Ours MIT Wi-Fi MIT
Ethernet

101

102

103

104

105

106

25

1,000
2,089

35,000

4.3 · 105

B
an

dw
id

th
(k

bp
s)

Figure 7. A comparison of SWANTV with other data transfer
methods.

Fig. 6 shows that bandwidth roughly scales quadratically
with the side length of the grid, as expected. On a grid
size of 150 by 240 with an error correction level of 0.2, we
achieved a bandwidth of 2089 kbps, which is comparable to
low-quality Wi-Fi and fast enough to transfer the text of a
book in one second. Fig. 7 compares SWANTV with other
common data transfer methods.

4.3. Scaling Challenges

A natural approach for maximizing bandwidth is to increase
the grid size. However, cameras have a limited resolution
and cannot take clear images of grids above a certain size.
For our camera, this maximum size was around 200 by 320.
Another approach is to use more colors instead of just 8.
We tried using 16 or 256 colors, but our camera could not
accurately capture colors in large grids. Finally, we consid-
ered running the animated code at a higher frame rate, but
that requires expensive hardware like 144 Hz monitors.

5. Conclusion
When we started this project, we were unsure if we could
even surpass TXQR’s bandwidth, but SWANTV has proven
that visual data transfer in the range of Wi-Fi speeds is vi-
able. Our pipeline is currently compute-intensive and un-
suitable for real-world applications, but we focused on max-
imizing bandwidth rather than efficiency. Consequently, we
believe that with more work, SWANTV can become a fast,
reliable, and efficient method for transferring data between
any two devices with a screen and camera.

Description of Contributions Kevin generated the simu-
lated datasets, performed quantization-aware training of the
CNNs, and ran the experiment shown in Fig. 5. Anthony de-
veloped the algorithmic approach and ran the experiments
in Fig. 6 and Fig. 7.

Our code can be found at https://git.exozy.
me/k/6.8301-Project.

References
[1] Information capacity and versions of the qr code. 1
[2] Axel Barroso-Laguna, Edgar Riba, Daniel Ponsa, and Krys-

tian Mikolajczyk. Key. net: Keypoint detection by hand-
crafted and learned cnn filters. In Proceedings of the
IEEE/CVF international conference on computer vision,
pages 5836–5844, 2019. 2

[3] Navaneeth Bodla, Bharat Singh, Rama Chellappa, and
Larry S Davis. Soft-nms–improving object detection with
one line of code. In Proceedings of the IEEE international
conference on computer vision, pages 5561–5569, 2017. 3

[4] David S Bolme, J Ross Beveridge, Bruce A Draper, and
Yui Man Lui. Visual object tracking using adaptive corre-
lation filters. In 2010 IEEE computer society conference on
computer vision and pattern recognition, pages 2544–2550.
IEEE, 2010. 2, 3

[5] John W Byers, Michael Luby, Michael Mitzenmacher, and
Ashutosh Rege. A digital fountain approach to reliable dis-
tribution of bulk data. ACM SIGCOMM Computer Commu-
nication Review, 28(4):56–67, 1998. 2

[6] Ivan Danyliuk. Transfer via qr, 2019. 2
[7] Paolo Di Febbo, Carlo Dal Mutto, Kinh Tieu, and Stefano

Mattoccia. Kcnn: Extremely-efficient hardware keypoint
detection with a compact convolutional neural network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition workshops, pages 682–690, 2018. 2

[8] Antonio Grillo, Alessandro Lentini, Marco Querini, and
Giuseppe F. Italiano. High capacity colored two dimen-
sional codes. In Proceedings of the International Multicon-
ference on Computer Science and Information Technology,
pages 709–716, 2010. 2

[9] Chris Harris, Mike Stephens, et al. A combined corner and
edge detector. In Alvey vision conference, pages 10–5244.
Citeseer, 1988. 2

[10] Raghuraman Krishnamoorthi. Quantizing deep convolu-
tional networks for efficient inference: A whitepaper. arXiv
preprint arXiv:1806.08342, 2018. 3

[11] I. S. Reed and G. Solomon. Polynomial codes over certain
finite fields. Journal of the Society for Industrial and Applied
Mathematics, 8(2):300–304, 1960. 2

[12] Edward Rosten and Tom Drummond. Machine learning
for high-speed corner detection. In Computer Vision–ECCV
2006: 9th European Conference on Computer Vision, Graz,
Austria, May 7-13, 2006. Proceedings, Part I 9, pages 430–
443. Springer, 2006. 2

[13] Lihang Xu. Transfer data with animated qr codes, 2021. 2
[14] Zhibo Yang, Huanle Xu, Jianyuan Deng, Chen Change Loy,

and Wing Cheong Lau. Robust and fast decoding of high-
capacity color qr codes for mobile applications. IEEE Trans-
actions on Image Processing, 27(12):6093–6108, 2018. 2

[15] Xiaoming Zhao, Xingming Wu, Jinyu Miao, Weihai Chen,
Peter CY Chen, and Zhengguo Li. Alike: Accurate and
lightweight keypoint detection and descriptor extraction.
IEEE Transactions on Multimedia, 2022. 2

[16] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Tor-
ralba, and Aude Oliva. Learning deep features for scene
recognition using places database. Advances in neural in-
formation processing systems, 27, 2014. 2

https://git.exozy.me/k/6.8301-Project
https://git.exozy.me/k/6.8301-Project

A. “Bad Apple!!” Experiement
To showcase the power and robustness of SWANTV, we
present here an application involving Japanese anime. “Bad
Apple!!” is a 2008 Japanese song and grayscale 8 MB
music video that achieved internet notoriety through being
ported to unconventional hardware such as graphing calcu-
lators and washing machines. For our application, we en-
coded the original video of “Bad Apple!!” into a SWANTV
code and overlaid the edges of the “Bad Apple!” video onto
our code, taking advantage of the error correction during
decoding. An example frame is shown in Fig. 8.

To extract the edges from “Bad Apple!!”, we simply used
all pixels with values between 1 and 254 inclusive. How-
ever, Reed-Solomon codes are not as magical as they ap-
pear and operate at the byte level, so an incorrect bit ruins
the entire byte.2 In addition, a Reed-Solomon code with a k
fraction of redundant bytes can only correct up to k−1

2 byte
errors. Thus, we used the error correction rate k = 0.4,
which is much higher than our other experiments. We used
a 120 by 160 grid size, so the theoretical maximum band-
width achievable is 1005 kbps.

In the experiment, we achieved 375.144 kbps, which
means less than half of the frames were successfully de-
coded. However, this bandwidth is still high enough to de-
code “Bad Apple!!” in less time than the length of the orig-
inal video, which implies that SWANTV is able to encode
more information in each frame than in the original video.
Also, it’s just insanely cool that this is possible.

2Just like how the name of the song “Bad Apple!!” comes from the
idiom “one bad apple can spoil the whole barrel.”

Figure 8. A frame from the original “Bad Apple!!” and the cor-
responding frame in the SWANTV code, featuring the character
Sakuya Izayoi.

https://www.youtube.com/watch?v=FtutLA63Cp8
https://www.youtube.com/watch?v=FtutLA63Cp8

	. Introduction
	. Related Work
	. QR Code Extensions
	. Error Correcting Codes (ECC)
	. Keypoint Detection

	. Methods
	. Encoding
	. Data
	. Grid Localization
	CNN Approach
	Algorithmic Approach

	. Decoding and Color Calibration
	. Practical Considerations

	. Results and Discussion
	. CNN Approach
	. Algorithmic Approach
	. Scaling Challenges

	. Conclusion
	. ``Bad Apple!!'' Experiement

